Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective

Evangelos I. Katsanos, Anastasios G. Sextos, George D. Manolis

Department of Civil Engineering, Aristotle University, Thessaloniki GR-54124, Greece

A R T I C L E I N F O

Article history:
Received 19 March 2009
Received in revised form 14 October 2009
Accepted 15 October 2009

Keywords:
Ground accelerations
Strong ground motion
Selection of real records
Seismological parameters
Response spectrum
Spectral matching
Intensity measures
Inelastic response
Design codes

A B S T R A C T

This paper reviews alternative selection procedures based on established methods for incorporating strong ground motion records within the framework of seismic design of structures. Given the fact that time history signals recorded at a given site constitute a random process which is practically impossible to reproduce, considerable effort has been expended in recent years on processing actual records so as to become ‘representative’ of future input histories to existing as well as planned construction in earthquake-prone regions. Moreover, considerable effort has been expended to ensure that dispersion in the structural response due to usage of different earthquake records is minimized. Along these lines, the aim of this paper is to present the most recent methods developed for selecting an ‘appropriate’ set of records that can be used for dynamic analysis of structural systems in the context of performance-based design. A comparative evaluation of the various alternatives available indicates that the current seismic code framework is rather simplified compared to what has actually been observed, thus highlighting both the uncertainties and challenges related to the selection of earthquake records.

C 2009 Elsevier Ltd. All rights reserved.

Contents

1. Introduction .. 1
2. Selection of recorded ground accelerations for seismic design .. 2
 2.1. Record selection based on earthquake magnitude (M) and distance (R) 2
 2.2. Additional record selection criteria ... 3
 2.2.1. Soil profile .. 3
 2.2.2. Strong motion duration ... 3
 2.2.3. Seismotectonic environment and other geophysical/seismological parameters 4
 2.2.4. Acceleration to velocity ratio (a/v) .. 4
 2.3. Record selection based on spectral matching .. 4
 2.4. Record selection based on ground motion intensity measures 6
 2.5. Investigation of scalar ground motion intensity measures .. 6
 2.6. Investigation of vector-valued ground motion intensity measures 7
3. Seismic code provisions for selection of real records .. 9
4. Conclusions .. 11
Acknowledgement ... 11
References ... 11

1. Introduction

It is now well established that elastic analyses of structures subjected to seismic actions, typically in the form of response spectra, do not always predict the hierarchy of failure mechanisms. It is also not possible to quantify the energy absorption and